S'more Chemical Equation Stoichiometry and Limiting Reactants Worksheet

- 1. Balance the following chemical equations:
 - (a) $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$
 - (b) $Fe_2O_3 + H_2 \rightarrow Fe + H_2O$
- 2. Calculate the moles of CO_2 produced when 10 moles of $C_6H_{12}O_6$ react completely with excess O_2 .
- If 8.5 grams of H₂ react with excess O₂, how many grams of H₂O will be formed? (Molar mass: H₂ = 2 g/mol, H₂O = 18 g/mol)
- Identify the limiting reactant when 5 moles of Fe₂O₃ react with 15 moles of H₂. Write the balanced equation first.
- 5. Theoretical and Percent Yield:
 - (a) If the theoretical yield of a reaction is 25 grams of product and the actual yield is 20 grams, calculate the percent yield.
 - (b) Explain what factors might cause a reaction to have a percent yield less than 100
- 6. S'more Chemistry Context:
 - (a) Using the analogy of making s'mores (2 crackers + 1 chocolate +

1 marshmallow = 1 s'more), calculate how many s'mores can be made from 10 crackers, 5 chocolates, and 8 marshmallows. Identify the limiting reactant.

- (b) If you have 3 s'mores leftover from a camping trip, calculate the percent yield if you expected to make 12 s'mores initially.
- 7. Challenge Problem:
 - (a) A reaction requires 3 moles of A for every 2 moles of B. If you start with 12 moles of A and 10 moles of B, determine the limiting reactant and calculate the amount of product formed assuming a 1:1 molar ratio of product to B.
- 8. Real-Life Application:
 - (a) Ammonia (NH₃) is produced using nitrogen gas (N₂) and hydrogen gas (H₂) in the Haber process: N₂ + 3H₂ → 2NH₃. If you have 28 grams of N₂ and 12 grams of H₂, determine the limiting reactant and calculate the mass of NH₃ produced. (Molar masses: N₂ = 28 g/mol, H₂ = 2 g/mol, NH₃ = 17 g/mol)

Solutions

1. Balancing Chemical Equations:

- (a) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
- (b) $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$

2. Moles of CO₂ Produced:

(a) From the equation, 1 mole of $C_6H_{12}O_6$ produces 6 moles of CO_2 . Therefore, 10 moles of $C_6H_{12}O_6$ produce 60 moles of CO_2 .

3. Mass of H_2O Produced:

(a) Moles of $H_2 = \frac{8.5}{2} = 4.25$ moles. From the equation, 1 mole of H_2 forms 1 mole of H_2O . Therefore, 4.25 moles of H_2O are formed. Mass of $H_2O = 4.25 \times 18 = 76.5$ grams.

4. Limiting Reactant:

 (a) Fe₂O₃ + 3H₂ → 2Fe + 3H₂O. From the stoichiometry, 5 moles of Fe₂O₃ require 15 moles of H₂. Both are used completely; no limiting reactant.

5. Theoretical and Percent Yield:

(a) Percent Yield = $\frac{ActualYield}{TheoreticalYield} \times 100 = \frac{20}{25} \times 100 = 80\%.$

(b) Factors include incomplete reactions, side reactions, or loss of product during handling.

6. S'more Chemistry Context:

- (a) For 10 crackers, 5 chocolates, and 8 marshmallows: 10 crackers need 5 chocolates and 5 marshmallows. Since only 5 chocolates are available, chocolate is the limiting reactant. Maximum s'mores = 5.
- (b) Percent Yield = $\frac{ActualYield}{ExpectedYield} \times 100 = \frac{3}{12} \times 100 = 25\%.$

7. Challenge Problem:

(a) For $3A + 2B \rightarrow$ Product: Starting with 12 moles of A and 10 moles of B: $\frac{12}{3} = 4$ reactions for A, and $\frac{10}{2} = 5$ reactions for B. A is the limiting reactant. Product = 4 moles.

8. Real-Life Application:

(a) $N_2 + 3H_2 \rightarrow 2NH_3$: Moles of $N_2 = \frac{28}{28} = 1$ mole, Moles of $H_2 = \frac{12}{2} = 6$ moles. From the stoichiometry, 1 mole of N_2 reacts with 3 moles of H_2 . N_2 is the limiting reactant. NH₃ formed = 2 × 1 = 2 moles. Mass = 2 × 17 = 34 grams.